A spatial analysis of school district performance in Minnesota, demonstrating spatially enabled evaluation

Christopher T. Moore Quantitative Methods in Education (QME) http://umn.edu/~moor0554

Introduction

- Longitudinal analysis is commonly used in applied educational research, but spatial analysis is underutilized (Singer, 2008; Renger et al., 2002; Tate, 2008).
 - *Spatially enabled* social science disciplines, such as public health and economics, regularly use geographic maps and spatial methods to form research questions, to sample, collect, and analyze data, and to disseminate results (Waller & Gotway, 2004).
- Terms
 - Spatial is a general term that encompasses geographic
 - Spatial data can be stored and processed in *geographic information systems* (*GIS*), which produce maps

Research questions

- How can applied educational researchers make better use of geographic information systems (GIS) and spatial analysis?
- To what extent do school districts *perform* like their neighbors?
 - Which school districts are outperforming their neighbors?
 - Where should interventions be located?

Most promising uses

- Promote participation of evaluation stakeholders (Moore, 2007a; Craig & Elwood, 1998)
- Plan and implement surveys (Craun & Freisthler, 2008; Brown, 2005)
 - Power analysis and geographically stratified random sampling
 - Instruments that feature maps (Talen & Shah, 2007)
- Conduct cluster randomized trials (Raudenbush, 1997)
 - Assign areas to treatment conditions
- Implement quasi-experimental studies
 - Focal and local comparison groups (Shadish and Cook, 2009)
 - Propensity score matching with spatial predictors (Bondonio, 2002)
 - Spatial regression discontinuity at geographic borders (Moore, 2008)

Most promising uses (To be demonstrated)

- Spatially reference data and join covariates (Renger et al., 2002)
 - Enhance primary data (e.g., with Census data; Moore, 2007b)
 - Minimize respondent burden
- Employ spatial (and spatio-temporal) statistical analysis (Verbitsky, 2007)
- Disseminate evaluation information in statistical maps (Davenport, 2006)
 - Visual adjuncts promote comprehension of text (Verdi & Kulhavy, 2002)

Mitigating concerns

- Maps are inherently inaccurate and prone to mislead (Monmonier, 1996)
- Mere visual decoration and distraction (Carney & Levin, 2002)
- Violation of participants' privacy (where they live; Banerjee, Carlin, & Gelfand, 2004)
- Spatial autocorrelation complicates spatial statistical analysis (Anselin et al., 1996)

Spatial autocorrelation

- "Everything is related to everything else, but near things are more related than distant things." -Tobler's (1970) first law of geography
- Consequences
 - Larger sample sizes required for statistical power
 - Spatially naïve models can yield biased estimates when an important spatially lagged term is omitted
 - Neighbors can influence learning, all else being equal (Leventhal & Brooks-Gunn, 2000)

Spatial modeling

- Spatial weights matrix W("proximity matrix")
 - Defines the neighborhood structure over the entire study area (Waller & Gotway, 2004)
 - k nearest neighbors style

 $w_{ij} = \begin{cases} 1/k & \text{if the centroid of region } j \text{ is one of the } k \text{ nearest to the centroid of region } i \\ 0 & \text{otherwise} \end{cases}$

• Spatial lag model: $y = \rho Wy + X\beta + \varepsilon$

Third grade MCA-II* results in 2007: School district proficiency rates (%)

Dependent variable	Name	Districts	Mean	SD	Min.	Max.
Math						
All students	$M\!P$	328	79.6	10.1	36.9	100.0
Eligible for free or reduced lunch	MPP	314	71.5	14.8	11.1	100.0
Economic proficiency gap (poverty- affluent difference)	MECONPD	302	-13.1	14.3	-48.9	55.6
Students of color and/or Hispanic or Latino ethnicity (minority)	MMINP	279	67.0	28.9	0.0	100.0
Racial/ethnic proficiency gap (minority-white difference)	MMINWPD	276	-14.3	27.4	-90.9	54.5
Reading						
All students	RP	328	81.6	8.8	43.8	100.0
Eligible for free or reduced lunch	RPP	316	72.1	13.7	33.3	100.0
Economic proficiency gap (poverty- affluent difference)	RECONPD	302	-15.3	13.4	-54.5	25.0
Students of color and/or Hispanic or Latino ethnicity (minority)	RMINP	282	67.5	28.0	0.0	100.0
Racial/ethnic proficiency gap (minority-white difference)	RMINWPD	279	-16.8	27.8	-96.6	40.0

*Minnesota Comprehensive Assessment - Series II

School districts: Math proficiency among third graders

Minnesota

School districts: Math proficiency among third graders

Twin Cities metro area

Each school district's k = 4 nearest neighbors

Values of $w_{ij} > 0$ in the spatial proximity matrix

Control variables: Demographics and revenue

Explanatory variable	Name	Districts	Mean	SD	Min.	Max.
Third graders enrolled	ENROLL_G	334	170.6	338.8	2	2,936
Third graders eligible for free or reduced lunch (%)	PCT_P	334	37.7	16.3	0.0	100.0
Third graders of color and/or Hispanic or Latino ethnicity (%)	PCT_MIN	334	12.1	16.0	0.0	100.0
Local property taxes per average daily membership (ADM)	PROPTREV	334	\$1,408	\$711	-\$114	\$4,053
Other local revenue per ADM	LOCREVO	334	\$1,215	\$660	\$357	\$7,154
State revenue per ADM	STATEREV	334	\$7,753	\$994	\$5,496	\$12,662
Federal revenue per ADM	FEDREV	334	\$663	\$1,123	\$108	\$17,358

Factor analysis results

Results for reading proficiency among third graders in poverty

	Preliminary model				Final model					
	Estimate	Robust SE	t t	р	Estimate	Robust SE	t t	р	Standardized est. [95% <i>CI</i>]	
Intercept	50.22	8.57	5.86	0.000	49.71	8.59	5.79	0.000		
RPP lagged	0.30	0.12	2.57	0.011	0.31	0.12	2.63	0.009	0.17 [0.04, 0.29]	
Redistribution factor	-1.53	0.84	-1.82	0.070						
Property tax factor	-3.00	0.96	-3.14	0.002	-2.46	0.91	-2.69	0.008	-0.18 [-0.31, -0.05]	
Fit										
R² adj.	0.084			0.078						
F(df)	10.04 (3, 245) <0.001		13.07 (2, 246)			< 0.001				

Results for economic gap in reading proficiency among third graders

	Preliminary model				Final model					
	Estimate	Robust SE	t t	p	Estimate	Robust SE	t t	p	Standardized est. [95% <i>CI</i>]	
Intercept	-10.22	1.92	-5.33	0.000	-9.93	1.89	-5.25	0.000		
RECONPD lagged	0.31	0.12	2.63	0.009	0.30	0.12	2.59	0.010	0.17 [0.04, 0.30]	
Redistribution factor	-1.53	0.95	-1.61	0.110						
Property tax factor	-3.82	0.98	-3.91	0.000	-3.59	0.95	-3.77	<0.001	-0.27 [-0.41, -0.13]	
Fit										
R² adj.	0.145			0.140						
F (<i>df</i>)	15.7 (3, 204) <0.001		21.09 (2	, 205)	< 0.001					

School district performance relative to neighbors

Minnesota

Early reading intervention clusters: Economic proficiency gap

Minnesota

Early reading intervention clusters: Economic proficiency gap

Twin Cities metro area

Conclusions

- Educational researchers can make better use of spatial methods by adopting techniques from spatially enabled disciplines, by managing the risks, and by continuing to make their own contributions (e.g., research on spatial cognition, systematic judgment of merit).
- Neighboring school districts influence performance to a small degree in limited instances (reading proficiency of third graders in poverty).

References

- Anselin, L., Bera, A. K., Florax, R., & Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. *Regional Science and Urban Economics*, 26(1), 77-104.
- Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). *Hierarchical modeling and analysis for spatial data*. Boca Raton, FL: Chapman & Hall/CRC.
- Bondonio, D. (2002). Evaluating decentralized policies: A method to compare the performance of economic development programmes across different regions or states. *Evaluation*, 8(1), 101-124.
- Brown, T. L. (2005). Evaluating geographic program performance analysis. Public Performance & Management Review, 29(2), 164-190.
- Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students' learning from text. *Educational Psychology Review, 14*(1), 5-26.
- Craig, W. J. & Elwood, S. A. (1998). How and why community groups use maps and geographic information. *Cartography and Geographic Information Systems*, 25(2), 95-104.
- Craun, S. W., & Freisthler, B. (2008). Using tax parcels to select a location-based sample: An illustration that examines residents' awareness of sex offenders in neighborhoods. *Evaluation Review*, *32*(4), 315-334.
- Davenport, E. C. (2006). *College access matters: The opportunity for college access programs in Minnesota*. Saint Paul, MN: Minnesota Minority Education Partnership (MMEP). Retrieved from http://www.mmep.net/
- Leventhal, T., & Brooks-Gunn, J. (2000). The neighborhoods they live in: The effects of neighborhood residence on child and adolescent outcomes. *Psychological Bulletin, 126*(2), 309-337.
- Minnesota Department of Education. (2007a). 2007 Minnesota Comprehensive Assessment results: Public schools. Saint Paul: Author. Retrieved from: http://education.state.mn.us/MDE/Data/Data_Downloads/Accountability_Data/Assessment_MCA_II/index.html
- Minnesota Department of Education. (2007b). *Minnesota School District and Attendance Boundaries, School Year 2006-2007*. Saint Paul: Minnesota Department of Administration. Retrieved from: http://www.lmic.state.mn.us/chouse/metadata/sdatt07.html
- Minnesota Department of Education. (2007c). *School district financial profiles*. Saint Paul: Author. Retrieved from: http://education.state.mn.us/MDE/Accountability_Programs/Program_Finance/Financial_Management/School_Dist rict_Financial_Profiles/index.html

References

- Moore, C. T. (2007a). *Minnesota 3-D: Technology Opportunities Program (TOP) grant evaluation report.* Saint Paul, MN: Wilder Research.
- Moore, C. T. (2007b). Resources for Child Caring: Goals, clients, and services following metropolitan-wide expansion. Saint Paul, MN: Wilder Research.
- Moore, C. T. (2008). *Estimating policy effects using spatial regression discontinuity: The case of New Jersey's minimum wage increase.* Paper presented at University of Minnesota Geographic Information Science (GIS) Day, Minneapolis, MN.
- Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17-33.
- Shadish, W. R., & Cook, T. D. (2009). The renaissance of field experimentation in evaluating interventions. *Annual Review of Psychology*, 60, 607-629.
- Raudenbush, S. W. (1997). Statistical analysis and optimal design for cluster randomized trials. *Psychological Methods, 2*(2), 173-185.
- Renger, R., Cimetta, A., Pettygrove, S., & Rogan, S. (2002). Geographic information systems (GIS) as an evaluation tool. *American Journal of Evaluation, 23*(4), 469.
- Singer, N. (2008). Geographic information systems: A new opportunity for psychological scientists. *Psychological Science Agenda 22*(2). Retrieved from: http://www.apa.org/science/psa/feb08gis.html
- Talen, E., & Shah, S. (2007). Neighborhood evaluation using GIS: An exploratory study. *Environment and Behavior, 39*(5), 583-615.
- Tate, William F. (2008). Geography of opportunity: Poverty, place, and educational outcomes. *Educational Researcher*, 37(7), 397-411.
- Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. *Economic Geography*, 46(2), 234-240.
- Verbitsky, N. (2007). Associational and causal inference in spatial hierarchical settings: Theory and applications. Unpublished doctoral dissertation, University of Michigan, Ann Arbor, MI.
- Verdi, M. P., & Kulhavy, R. W. (2002). Learning with maps and texts: An overview. *Educational Psychology Review*, 14(1), 27-46.
- Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. Hoboken, NJ: Wiley.